12 research outputs found

    Comprehensive survey on quality of service provisioning approaches in cognitive radio networks : part one

    Get PDF
    Much interest in Cognitive Radio Networks (CRNs) has been raised recently by enabling unlicensed (secondary) users to utilize the unused portions of the licensed spectrum. CRN utilization of residual spectrum bands of Primary (licensed) Networks (PNs) must avoid harmful interference to the users of PNs and other overlapping CRNs. The coexisting of CRNs depends on four components: Spectrum Sensing, Spectrum Decision, Spectrum Sharing, and Spectrum Mobility. Various approaches have been proposed to improve Quality of Service (QoS) provisioning in CRNs within fluctuating spectrum availability. However, CRN implementation poses many technical challenges due to a sporadic usage of licensed spectrum bands, which will be increased after deploying CRNs. Unlike traditional surveys of CRNs, this paper addresses QoS provisioning approaches of CRN components and provides an up-to-date comprehensive survey of the recent improvement in these approaches. Major features of the open research challenges of each approach are investigated. Due to the extensive nature of the topic, this paper is the first part of the survey which investigates QoS approaches on spectrum sensing and decision components respectively. The remaining approaches of spectrum sharing and mobility components will be investigated in the next part

    Identification as a deterrent for security enhancement in cognitive radio networks

    Get PDF
    Cognitive Radio Networks (CRNs) are prone to emerging coexistence security threats such as Primary User Emulation Attack (PUEA). Specifically, a malicious CRN may mimic licensees’ (Primary Users (PUs)) signal characteristics to force another CRN to vacate its channels thinking that PUs have returned. While existing schemes are promising to some extent on detecting PUEAs, they are not able to prevent the attacks. In this article, we propose a PUEA Deterrent (PUED) algorithm that can provide PUEAs' commission details: offender CRNs and attacks’ time and bandwidth. There are many similarities between PUED and Closed-Circuit Television (CCTV) in terms of: deterrence strategy, reason for use, surveillance characteristics, surveillance outcome, and operation site. According to the criminology literature, robust CCTV systems have shown a significant reduction in visible offences (e.g. vehicle theft), reducing crime rates by 80%. Similarly, PUED will contribute the same effectiveness in deterring PUEAs. Furthermore, providing PUEAs’ details will prevent the network’s cognitive engine from considering the attacks as real PUs, consequently avoiding devising unreliable spectrum models for the attacked channels. Extensive simulations show the effectiveness of the PUED algorithm in terms of improving CRNs’ performance

    Towards realisation of spectrum sharing of cognitive radio networks

    Get PDF
    Cognitive radio networks (CRN) have emerged as a promising solution to spectrum shortcoming, thanks to Professor Mitola who coined Cognitive Radios. To enable efficient communications, CRNs need to avoid interference to both Primary (licensee) Users (PUs), and among themselves (called self-coexistence). In this thesis, we focus on self-coexistence issues. Very briefly, the problems are categorised into intentional and unintentional interference. Firstly, unintentional interference includes: 1) CRNs administration; 2) Overcrowded CRNs Situation; 3) Missed spectrum detection; 4) Inter-cell Interference (ICI); and 5) Inability to model Secondary Users’ (SUs) activity. In intentional interference there is Primary User Emulation Attack (PUEA). To administer CRN operations (Prob. 1), in our first contribution, we proposed CogMnet, which aims to manage the spectrum sharing of centralised networks. CogMnet divides the country into locations. It then dedicates a real-time database for each location to record CRNs’ utilisations in real time, where each database includes three storage units: Networks locations storage unit; Real-time storage unit; and Historical storage unit. To tackle Prob. 2, our second contribution is CRNAC, a network admission control algorithm that aims to calculate the maximum number of CRNs allowed in any location. CRNAC has been tested and evaluated using MATLAB. To prevent research problems 3, 4, and to tackle research problem (5), our third contribution is RCNC, a new design for an infrastructure-based CRN core. The architecture of RCNC consists of two engines: Monitor and Coordinator Engine (MNCE) and Modified Cognitive Engine (MCE). Comprehensive simulation scenarios using ICS Designer (by ATDI) have validated some of RCNC’s components. In the last contribution, to deter PUEA (the intentional interference type), we developed a PUEA Deterrent (PUED) algorithm capable of detecting PUEAs commission details. PUED must be implemented by a PUEA Identifier Component in the MNCE in RCNC after every spectrum handing off. Therefore, PUED works like a CCTV system. According to criminology, robust CCTV systems have shown a significant prevention of clear visible theft, reducing crime rates by 80%. Therefore, we believe that our algorithm will do the same. Extensive simulations using a Vienna simulator showed the effectiveness of the PUED algorithm in terms of improving CRNs’ performance

    Comparison of Different Wavelength Propagations over Few-Mode Fiber based on Space Division Multiplexing in Conjunction with Electrical Equalization

    Get PDF
    Abstract—Nonlinearities in optical fibers deteriorate system performances and become a major performance-limiting issue. This article aims to investigate the compensation of nonlinear distortions in optical communication systems based on different wavelength propagations over few-mode fiber (FMF). The study adopted Space Division Multiplexing (SDM) based on decision feedback equalizer (DFE). Various transmission wavelength of the FMF system is applied to mitigate the attenuation effect on the system. In this paper, different wavelengths (780, 850 and 1550 nm) are used in SDM. Extensive simulation is performed to assess the attenuation and Bit Error Rate (BER) in each case. The results show that the wavelength of 1550 nm produces higher power and less attenuation in the transmission. Furthermore, this wavelength produces the best distance with less BER compared to 780 nm and 850 nm wavelengths. Moreover, the validations show improvement in BER and eye diagram

    Proceedings of the CSE 2017 Annual PGR Symposium (CSE-PGSym17)

    Get PDF
    Welcome to the Proceedings of the second Annual Postgraduate Research Symposium of the School of Computing, Science and Engineering (CSE-PGSym 2017). After the success of the first symposium, the school is delighted to run its second symposium which is being held in The Old Fire Station on 17th March 2017. The symposium is organised by the Salford Innovation Research Centre (SIRC) to provide a forum for the PGR community in the school to share their research work, engage with their peers and staff and stimulate new ideas. In line with SIRC’s strategy, the symposium aims to bring together researchers from the six groups that make up the centre to engage in multidisciplinary discussions and collaborations. It also aims to contribute to the creation of a collaborative environment within the Research Centre and the Groups and share information and explore new ideas. This is also aligned with the University’s ICZ (Industrial Collaboration Zone) programme for creating cultural, physical and virtual environments for collaboration, innovation and learning

    SPARC 2017 retrospect & prospects : Salford postgraduate annual research conference book of abstracts

    Get PDF
    Welcome to the Book of Abstracts for the 2017 SPARC conference. This year we not only celebrate the work of our PGRs but also the 50th anniversary of Salford as a University, which makes this year’s conference extra special. Once again we have received a tremendous contribution from our postgraduate research community; with over 130 presenters, the conference truly showcases a vibrant PGR community at Salford. These abstracts provide a taster of the research strengths of their works, and provide delegates with a reference point for networking and initiating critical debate. With such wide-ranging topics being showcased, we encourage you to exploit this great opportunity to engage with researchers working in different subject areas to your own. To meet global challenges, high impact research inevitably requires interdisciplinary collaboration. This is recognised by all major research funders. Therefore engaging with the work of others and forging collaborations across subject areas is an essential skill for the next generation of researchers

    SPARC 2016 Salford postgraduate annual research conference book of abstracts

    Get PDF
    corecore